Sarah has what's called Saethre-Chotzen Syndrome. This genetic condition is the cause for the Craniosynostosis. Anyone can be born with Craniosynostosis but those who have this genetic condition are higher at risk. Usually when the craniosynostosis repair is completed subsequent surgeries are not needed; however, because Sarah has Saethre-Chotzen the fusion happens at a higher rate. Saethre-Chotzen syndrome presents itself differently in each person and each family. For example, Jason has the same syndrome but does not have Craniosynostosis. Jason has the ptosis (droopy eyelids), but Sarah doesn't have that. Below is more detailed information about the syndrome:
What is Saethre-Chotzen syndrome?
Saethre-Chotzen syndrome is a genetic condition characterized by the premature fusion of certain skull bones (craniosynostosis). This early fusion prevents the skull from growing normally and affects the shape of the head and face.
Most people with Saethre-Chotzen syndrome have prematurely fused skull bones along the coronal suture, the growth line that goes over the head from ear to ear. Other parts of the skull may be malformed as well. These changes can result in an abnormally shaped head, a high forehead, a low frontal hairline, droopy eyelids (ptosis), widely spaced eyes, and a broad nasal bridge. One side of the face may appear noticeably different from the other (facial asymmetry). Most people with Saethre-Chotzen syndrome also have small, unusually shaped ears.
The signs and symptoms of Saethre-Chotzen syndrome vary widely, even among affected individuals in the same family. This condition can cause mild abnormalities of the hands and feet, such as fusion of the skin between the second and third fingers on each hand and a broad or duplicated great toe. Delayed development and learning difficulties have been reported, although most people with this condition are of normal intelligence. Less common signs and symptoms of Saethre-Chotzen syndrome include short stature, abnormalities of the bones of the spine (the vertebra), hearing loss, and heart defects.
Robinow-Sorauf syndrome is a condition with features similar to those of Saethre-Chotzen syndrome, including craniosynostosis and broad or duplicated great toes. It was once considered a separate disorder, but was found to result from mutations in the same gene and is now thought to be a mild variant of Saethre-Chotzen syndrome.
How common is Saethre-Chotzen syndrome?
Saethre-Chotzen syndrome has an estimated prevalence of 1 in 25,000 to 50,000 people.
What are the genetic changes related to Saethre-Chotzen syndrome?
Mutations in the TWIST1 gene cause Saethre-Chotzen syndrome. The TWIST1 gene provides instructions for making a protein that plays an important role in early development. This protein is a transcription factor, which means that it attaches (binds) to specific regions of DNA and helps control the activity of particular genes. The TWIST1 protein is active in cells that give rise to bones, muscles, and other tissues in the head and face. It is also involved in the development of the limbs.
Mutations in the TWIST1 gene prevent one copy of the gene in each cell from making any functional protein. A shortage of the TWIST1 protein affects the development and maturation of cells in the skull, face, and limbs. These abnormalities underlie the signs and symptoms of Saethre-Chotzen syndrome, including the premature fusion of certain skull bones.
A small number of cases of Saethre-Chotzen syndrome have resulted from a structural chromosomal abnormality, such as a deletion or rearrangement of genetic material, in the region of chromosome 7 that contains the TWIST1 gene. When Saethre-Chotzen syndrome is caused by a chromosomal deletion instead of a mutation within the TWIST1 gene, affected children are much more likely to have intellectual disability, developmental delay, and learning difficulties. These features are typically not seen in classic cases of Saethre-Chotzen syndrome. Researchers believe that a loss of other genes on chromosome 7 may be responsible for these additional features.
Read more about the TWIST1 gene and chromosome 7.
Can Saethre-Chotzen syndrome be inherited?
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, an affected person inherits the mutation from one affected parent. Other cases may result from new mutations in the gene. These cases occur in people with no history of the disorder in their family.
Some people with a TWIST1 mutation do not have any of the obvious features of Saethre-Chotzen syndrome. These people are still at risk of passing on the gene mutation, and may have a child with craniosynostosis and the other typical signs and symptoms of the condition.
No comments:
Post a Comment